Open Contents
정보원
주제분야
연도
- 202395,139
- 2022420,581
- 2021380,204
- 2020730,318
- 2019666,394
- 2018500,355
- 2017264,709
- 2016217,783
- 2015209,770
- 2014199,101
- 2013179,694
- 2012165,732
- 2011161,394
- 2010137,552
- 2009135,808
- 2008108,511
- 200789,309
- 200677,770
- 200572,278
- 200459,858
- 200352,796
- 200247,587
- 200143,418
- 200031,664
- 199928,572
- 199825,118
- 199719,812
- 199616,690
- 199513,682
- 199410,737
- 19937,377
- 19923,748
- 1991953
- 1990562
- 1989494
- 1988349
- 1987349
- 1986301
- 1985282
- 1984274
- 1983277
- 1982326
- 1981302
- 1980360
- 1979308
- 1978289
- 1977277
- 1976286
- 1975348
- 1974251
- 1973193
- 197282
- 1971104
- 1970108
- 1969110
- 1968105
- 196797
- 1966102
- 1965106
- 1964137
- 1963150
- 196295
- 1961157
- 1960142
- 1959111
- 195875
- 195778
- 195697
- 1955162
- 1954163
- 1953145
- 1952148
- 1951142
- 1950142
- 1949170
- 1948132
- 1947138
- 1946106
- 1945111
- 194486
- 194390
- 194299
- 1941118
- 1940116
- 1939137
- 1938140
- 1937119
- 1936126
- 1935118
- 193498
- 1933101
- 1932119
- 1931109
- 1930112
- 1929129
- 1928136
- 1927125
- 1926133
- 1925127
- 1924152
- 1923132
- 1922131
- 1921140
- 1920122
- 1919123
- 1918154
- 1917133
- 1916163
- 1915166
- 1914172
- 1913165
- 1912179
- 1911170
- 1910197
- 1909180
- 1908177
- 1907306
- 1906315
- 1905176
- 1904337
- 1903172
- 1902151
- 1901148
- 1900198
- 1899282
- 1898291
- 1897280
- 1896362
- 1895356
- 1894362
- 1893358
- 1892325
- 1891300
- 1890287
- 1889372
- 1888357
- 1887230
- 1886190
- 1885322
- 1884292
- 1883298
- 1882328
- 1881312
- 1880324
- 1879285
- 1878258
- 1877396
- 1876327
- 1875358
- 1874396
- 1873365
- 1872427
- 1871382
- 1870404
- 1869396
- 1868355
- 1867348
- 1866224
- 1865232
- 1864360
- 1863214
- 1862206
- 1861203
- 1860363
- 1859320
- 1858367
- 1857372
- 1856343
- 1855383
- 1854438
- 1853538
- 1852457
- 1851489
- 1850419
- 1849381
- 1848387
- 1847389
- 1846438
- 1845428
- 1844399
- 1843245
- 1842476
- 1841293
- 1840257
- 1839290
- 1838263
- 1837290
- 1836249
- 1835230
- 1834276
- 1833222
- 1832267
- 1831289
- 1830279
- 1829310
- 1828321
- 1827272
- 1826250
- 1825226
- 1824214
- 1823225
- 1822231
- 1821205
- 1820206
- 1819198
- 1818208
- 1817213
- 1816225
- 1815223
- 1814293
- 1813274
- 1812254
- 1811329
- 1810301
- 1809279
- 1808336
- 1807337
- 1806319
- 1805361
- 1804288
- 1803281
- 1802283
- 1801349
- 1800349
- 1799307
- 131
-
SCOAP3
Subject Source SCOAP3 URL https://repo.scoap3.org/records/76402view Article Title Investigation of -boson Decay Into And baryons within the NRQCD factorization approachAuthors Luo, Xuan; Fu, Hai-Bing; Tian, Hai-JiangAbstract Z-boson decay provides a good opportunity to search for the $ \Xi_{bQ} $ baryon because a large number of its events can be collected at high energy colliders. In this paper, we perform a complete investigation of the indirect production of the $ \Xi_{bQ} $ and $ \Xi_{bQ} $ baryons via the Z-boson decay process $ \Xi_{bQ} $ with a $ \Xi_{bQ} $ quark under the NRQCD factorization approach. After considering the contribution from the diquark states $ \Xi_{bQ} $ , $ \Xi_{bQ} $ , $ \Xi_{bQ} $ , and $ \Xi_{bQ} $ , the calculated branching fractions are $ \Xi_{bQ} $ and $ \Xi_{bQ} $ . Furthermore, the $ \Xi_{bQ} $ and $ \Xi_{bQ} $ production events are predicted to be of the order of $ \Xi_{bQ} $ and $ \Xi_{bQ} $ at the LHC collider, and the order of $ \Xi_{bQ} $ and $ \Xi_{bQ} $ for the CEPC collider. We then estimate the production ratio for $ \Xi_{bQ} $ with $ \Xi_{bQ} $ in Z-boson decay, that is, $ \Xi_{bQ} $ and $ \Xi_{bQ} $ , respectively. Finally, we present the differential decay widths of $ \Xi_{bQ} $ and $ \Xi_{bQ} $ with respect to $ \Xi_{bQ} $ and z distributions and analyze the uncertainties.Is Part Of CPC 2023 , Vol.C47 , 053102 Identifier ISSN: DOI 10.1088/1674-1137/acbc0ePublisher IOPCategory Resources PDF: http://repo.scoap3.org/api/files/e55988be-fe27-4850-a4c2-9c51f5e9c385/10.1088/1674-1137/acbc0e.pdf
-
SCOAP3
Subject Source SCOAP3 URL https://repo.scoap3.org/records/76403view Article Title Study of parity violation in And DecaysAuthors Hong, Peng-Cheng; Yan, Fang; Ping, Rong-Gang; Luo, TaoAbstract CP violation in baryonic decays has not been significantly observed. With large data events accumulated at $ {e^+e^-} $ colliders or the Large Hadron Collider, charmed baryon decays would provide a promising laboratory to test CP symmetry. In this study, we formulate $ {e^+e^-} $ and $ {e^+e^-} $ decays for the measurement of their asymmetry parameters in weak decays at the BESIII or LHCb experiments. The polarization transfer is analyzed in the two processes of $ {e^+e^-} $ and $ {e^+e^-} $ , and the formulas for the joint angular distribution of these processes are provided. The sensitivity of the measurement of the asymmetry parameters of the above two decay processes is estimated for future experiments.Is Part Of CPC 2023 , Vol.C47 , 053101 Identifier ISSN: DOI 10.1088/1674-1137/acb7cePublisher IOPCategory Resources PDF: http://repo.scoap3.org/api/files/369f9020-99c6-4a26-816e-bb315d775c24/10.1088/1674-1137/acb7ce.pdf
-
SCOAP3
Subject Source SCOAP3 URL https://repo.scoap3.org/records/76224view Article Title Search for heavy Majorana neutrinos at future lepton collidersAuthors Lu, Peng-Cheng; Si, Zong-Guo; Wang, Zhe; Yang, Xing-Hua; Zhang, Xin-YiAbstract A nonzero neutrino mass may be a sign of new physics beyond the standard model (SM). To explain the small neutrino mass, we can extend the SM using right-handed Majorana neutrinos in a low-scale seesaw mechanism, and the CP violation effect can be induced due to the CP phase in the interference of heavy Majorana neutrinos. The existence of heavy Majorana neutrinos may lead to lepton number violation processes, which can be used to search for the signals of heavy Majorana neutrinos. In this paper, we focus on the CP violation effect related to two generations of heavy Majorana neutrinos at $ 15 $ GeV $ 15 $ GeV in the pair production of W bosons and rare decays. It is valuable to investigate Majorana neutrino production signals and the related CP violation effects in rare W boson decays at future lepton colliders.Is Part Of CPC 2023 , Vol.C47 , 043107 Identifier ISSN: DOI 10.1088/1674-1137/acb997Publisher IOPCategory Resources PDF: http://repo.scoap3.org/api/files/d7265d4f-4cbe-4125-8b3d-204005576640/10.1088/1674-1137/acb997.pdf
-
SCOAP3
Subject Source SCOAP3 URL https://repo.scoap3.org/records/75983view Article Title Observation ofAuthors Ablikim, M.; Achasov, M.N.; Adlarson, P.; Albrecht, M.; Aliberti, R.; Amoroso, A.; An, M.R.; An, Q.; Bai, X.H.; Bai, Y.; Bakina, O.; Baldini Ferroli, R.; Balossino, I.; Ban, Y.; Batozskaya, V.; Becker, D.; Begzsuren, K.; Berger, N.; Bertani, M.; Bettoni, D.; Bianchi, F.; Bloms, J.; Bortone, A.; Boyko, I.; Briere, R.A.; Brueggemann, A.; Cai, H.; Cai, X.; Calcaterra, A.; Cao, G.F.; Cao, N.; Cetin, S.A.; Chang, J.F.; Chang, W.L.; Chelkov, G.; Chen, C.; Chen, Chao; Chen, G.; Chen, H.S.; Chen, M.L.; Chen, S.J.; Chen, S.M.; Chen, T.; Chen, X.R.; Chen, X.T.; Chen, Y.B.; Chen, Z.J.; Cheng, W.S.; Chu, X.; Cibinetto, G.; Cossio, F.; Cui, J.J.; Dai, H.L.; Dai, J.P.; Dbeyssi, A.; de Boer, R.E.; Dedovich, D.; Deng, Z.Y.; Denig, A.; Denysenko, I.; Destefanis, M.; De Mori, F.; Ding, Y.; Dong, J.; Dong, L.Y.; Dong, M.Y.; Dong, X.; Du, S.X.; Egorov, P.; Fan, Y.L.; Fang, J.; Fang, S.S.; Fang, W.X.; Fang, Y.; Farinelli, R.; Fava, L.; Feldbauer, F.; Felici, G.; Feng, C.Q.; Feng, J.H.; Fischer, K; Fritsch, M.; Fritzsch, C.; Fu, C.D.; Gao, H.; Gao, Y.N.; Gao, Yang; Garbolino, S.; Garzia, I.; Ge, P.T.; Ge, Z.W.; Geng, C.; Gersabeck, E.M.; Gilman, A; Goetzen, K.; Gong, L.; Gong, W.X.; Gradl, W.; Greco, M.; Gu, L.M.; Gu, M.H.; Gu, Y.T.; Guan, C.Y.; Guo, A.Q.; Guo, L.B.; Guo, R.P.; Guo, Y.P.; Guskov, A.; Han, T.T.; Han, W.Y.; Hao, X.Q.; Harris, F.A.; He, K.K.; He, K.L.; Heinsius, F.H.; Heinz, C.H.; Heng, Y.K.; Herold, C.; Himmelreich, M.; Hou, G.Y.; Hou, Y.R.; Hou, Z.L.; Hu, H.M.; Hu, J.F.; Hu, T.; Hu, Y.; Huang, G.S.; Huang, K.X.; Huang, L.Q.; Huang, X.T.; Huang, Y.P.; Huang, Z.; Hussain, T.; Hüsken, N; Imoehl, W.; Irshad, M.; Jackson, J.; Jaeger, S.; Janchiv, S.; Ji, Q.; Ji, Q.P.; Ji, X.B.; Ji, X.L.; Ji, Y.Y.; Jia, Z.K.; Jiang, H.B.; Jiang, S.S.; Jiang, X.S.; Jiang, Y.; Jiao, J.B.; Jiao, Z.; Jin, S.; Jin, Y.; Jing, M.Q.; Johansson, T.; Kalantar-Nayestanaki, N.; Kang, X.S.; Kappert, R.; Ke, B.C.; Keshk, I.K.; Khoukaz, A.; Kiese, P.; Kiuchi, R.; Kliemt, R.; Koch, L.; Kolcu, O.B.; Kopf, B.; Kuemmel, M.; Kuessner, M.; Kupsc, A.; Kühn, W.; Lane, J.J.; Lange, J.S.; Larin, P.; Lavania, A.; Lavezzi, L.; Lei, Z.H.; Leithoff, H.; Lellmann, M.; Lenz, T.; Li, C.; Li, C.H.; Li, Cheng; Li, D.M.; Li, F.; Li, G.; Li, H.; Li, H.B.; Li, H.J.; Li, H.N.; Li, J.Q.; Li, J.S.; Li, J.W.; Li, Ke; Li, L.J.; Li, L.K.; Li, Lei; Li, M.H.; Li, P.R.; Li, S.X.; Li, S.Y.; Li, T.; Li, W.D.; Li, W.G.; Li, X.H.; Li, X.L.; Li, Xiaoyu; Liang, H.; Liang, Y.F.; Liang, Y.T.; Liao, G.R.; Liao, L.Z.; Libby, J.; Limphirat, A.; Lin, C.X.; Lin, D.X.; Lin, T.; Liu, B.J.; Liu, C.X.; Liu, D.; Liu, F.H.; Liu, Fang; Liu, Feng; Liu, G.M.; Liu, H.; Liu, H.B.; Liu, H.M.; Liu, Huanhuan; Liu, Huihui; Liu, J.B.; Liu, J.L.; Liu, J.Y.; Liu, K.; Liu, K.Y.; Liu, Ke; Liu, L.; Liu, Lu; Liu, M.H.; Liu, P.L.; Liu, Q.; Liu, S.B.; Liu, T.; Liu, W.K.; Liu, W.M.; Liu, X.; Liu, Y.; Liu, Y.B.; Liu, Z.A.; Liu, Z.Q.; Lou, X.C.; Lu, F.X.; Lu, H.J.; Lu, J.G.; Lu, X.L.; Lu, Y.; Lu, Y.P.; Lu, Z.H.; Luo, C.L.; Luo, M.X.; Luo, T.; Luo, X.L.; Lyu, X.R.; Lyu, Y.F.; Ma, F.C.; Ma, H.L.; Ma, L.L.; Ma, M.M.; Ma, Q.M.; Ma, R.Q.; Ma, R.T.; Ma, X.Y.; Ma, Y.; Maas, F.E.; Maggiora, M.; Maldaner, S.; Malde, S.; Malik, Q.A.; Mangoni, A.; Mao, Y.J.; Mao, Z.P.; Marcello, S.; Meng, Z.X.; Messchendorp, J.G.; Mezzadri, G.; Miao, H.; Min, T.J.; Mitchell, R.E.; Mo, X.H.; Muchnoi, N. Yu.; Nefedov, Y.; Nerling, F.; Nikolaev, I.B.; Ning, Z.; Nisar, S.; Niu, Y.; Olsen, S.L.; Ouyang, Q.; Pacetti, S.; Pan, X.; Pan, Y.; Pathak, A.; Pelizaeus, M.; Peng, H.P.; Peters, K.; Ping, J.L.; Ping, R.G.; Plura, S.; Pogodin, S.; Prasad, V.; Qi, F.Z.; Qi, H.; Qi, H.R.; Qi, M.; Qi, T.Y.; Qian, S.; Qian, W.B.; Qian, Z.; Qiao, C.F.; Qin, J.J.; Qin, L.Q.; Qin, X.P.; Qin, X.S.; Qin, Z.H.; Qiu, J.F.; Qu, S.Q.; Rashid, K.H.; Redmer, C.F.; Ren, K.J.; Rivetti, A.; Rodin, V.; Rolo, M.; Rong, G.; Rosner, Ch.; Ruan, S.N.; Sang, H.S.; Sarantsev, A.; Schelhaas, Y.; Schnier, C.; Schoenning, K.; Scodeggio, M.; Shan, K.Y.; Shan, W.; Shan, X.Y.; Shangguan, J.F.; Shao, L.G.; Shao, M.; Shen, C.P.; Shen, H.F.; Shen, X.Y.; Shi, B.A.; Shi, H.C.; Shi, J.Y.; Shi, Q.Q.; Shi, R.S.; Shi, X.; D Shi, X.; Song, J.J.; Song, W.M.; Song, Y.X.; Sosio, S.; Spataro, S.; Stieler, F.; Su, K.X.; Su, P.P.; Su, Y.J.; Sun, G.X.; Sun, H.; Sun, H.K.; Sun, J.F.; Sun, L.; Sun, S.S.; Sun, T.; Sun, W.Y.; Sun, X; Sun, Y.J.; Sun, Y.Z.; Sun, Z.T.; Tan, Y.H.; Tan, Y.X.; Tang, C.J.; Tang, G.Y.; Tang, J.; Tao, L.Y.; Tao, Q.T.; Tat, M.; Teng, J.X.; Thoren, V.; Tian, W.H.; Tian, Y.; Uman, I.; Wang, B.; Wang, B.L.; Wang, C.W.; Wang, D.Y.; Wang, F.; Wang, H.J.; Wang, H.P.; Wang, K.; Wang, L.L.; Wang, M.; Wang, M.Z.; Wang, Meng; Wang, S.; Wang, T.; Wang, T.J.; Wang, W.; Wang, W.H.; Wang, W.P.; Wang, X.; Wang, X.F.; Wang, X.L.; Wang, Y.; Wang, Y.D.; Wang, Y.F.; Wang, Y.H.; Wang, Y.Q.; Wang, Yaqian; Wang, Z.; Wang, Z.Y.; Wang, Ziyi; Wei, D.H.; Weidner, F.; Wen, S.P.; White, D.J.; Wiedner, U.; Wilkinson, G.; Wolke, M.; Wollenberg, L.; Wu, J.F.; Wu, L.H.; Wu, L.J.; Wu, X.; Wu, X.H.; Wu, Y.; Wu, Z.; Xia, L.; Xiang, T.; Xiao, D.; Xiao, G.Y.; Xiao, H.; Xiao, S.Y.; Xiao, Y.L.; Xiao, Z.J.; Xie, C.; Xie, X.H.; Xie, Y.; Xie, Y.G.; Xie, Y.H.; Xie, Z.P.; Xing, T.Y.; Xu, C.F.; Xu, C.J.; Xu, G.F.; Xu, H.Y.; Xu, Q.J.; Xu, X.P.; Xu, Y.C.; Xu, Z.P.; Yan, F.; Yan, L.; Yan, W.B.; Yan, W.C.; Yang, H.J.; Yang, H.L.; Yang, H.X.; Yang, L.; Yang, S.L.; Yang, Tao; Yang, Y.F.; Yang, Y.X.; Yang, Yifan; Ye, M.; Ye, M.H.; Yin, J.H.; You, Z.Y.; Yu, B.X.; Yu, C.X.; Yu, G.; Yu, T.; Yuan, C.Z.; Yuan, L.; Yuan, S.C.; Yuan, X.Q.; Yuan, Y.; Yuan, Z.Y.; Yue, C.X.; Zafar, A.A.; Zeng, F.R.; Zeng, X.; Zeng, Y.; Zhan, Y.H.; Zhang, A.Q.; Zhang, B.L.; Zhang, B.X.; Zhang, D.H.; Zhang, G.Y.; Zhang, H.; Zhang, H.H.; Zhang, H.Y.; Zhang, J.L.; Zhang, J.Q.; Zhang, J.W.; Zhang, J.X.; Zhang, J.Y.; Zhang, J.Z.; Zhang, Jianyu; Zhang, Jiawei; Zhang, L.M.; Zhang, L.Q.; Zhang, Lei; Zhang, P.; Zhang, Q.Y.; Zhang, Shuihan; Zhang, Shulei; Zhang, X.D.; Zhang, X.M.; Zhang, X.Y.; Zhang, Y.; Zhang, Y.T.; Zhang, Y.H.; Zhang, Yan; Zhang, Yao; Zhang, Z.H.; Zhang, Z.Y.; Zhao, G.; Zhao, J.; Zhao, J.Y.; Zhao, J.Z.; Zhao, Lei; Zhao, Ling; Zhao, M.G.; Zhao, Q.; Zhao, S.J.; Zhao, Y.B.; Zhao, Y.X.; Zhao, Z.G.; Zhemchugov, A.; Zheng, B.; Zheng, J.P.; Zheng, Y.H.; Zhong, B.; Zhong, C.; Zhong, X.; Zhou, H.; Zhou, L.P.; Zhou, X.; Zhou, X.K.; Zhou, X.R.; Zhou, X.Y.; Zhou, Y.Z.; Zhu, J.; Zhu, K.; Zhu, K.J.; Zhu, L.X.; Zhu, S.H.; Zhu, S.Q.; Zhu, T.J.; Zhu, W.J.; Zhu, Y.C.; Zhu, Z.A.; Zou, B.S.; Zou, J.H.; (BESIII Collaboration)Abstract Using data taken at 29 center-of-mass energies between 4.16 and 4.70 GeV with the BESIII detector at the Beijing Electron Positron Collider corresponding to a total integrated luminosity of approximately 18.8 $ \rm fb^{-1} $ , the process $ \rm fb^{-1} $ is observed for the first time with a statistical significance of $ \rm fb^{-1} $ . The average Born cross sections in the energy ranges of (4.160, 4.380) GeV, (4.400, 4.600) GeV and (4.610, 4.700) GeV are measured to be $ \rm fb^{-1} $ fb, $ \rm fb^{-1} $ fb and $ \rm fb^{-1} $ fb, respectively, where the first uncertainties are statistical and the second are systematic. The line shapes of the $ \rm fb^{-1} $ and $ \rm fb^{-1} $ invariant mass spectra are consistent with phase space distributions, indicating that no hexaquark or di-baryon state is observed.Is Part Of CPC 2023 , Vol.C47 , 043001 Identifier ISSN: DOI 10.1088/1674-1137/acb6ebPublisher IOPCategory Resources PDF: http://repo.scoap3.org/api/files/2d236a03-d2d1-46cc-b56e-ef10a1baaf41/10.1088/1674-1137/acb6eb.pdf
-
SCOAP3
Subject Source SCOAP3 URL https://repo.scoap3.org/records/76401view Article Title Searching for the axion-like particle at the EICAuthors Liu, Yandong; Yan, BinAbstract The axion-like particle (ALP) is a well motivated new particle candidate for beyond the standard model. In this study, we propose to probe the ALP via photon fusion scattering at the upcoming Electron-Ion Collider (EIC) with electron and proton energies of $ E_e=20\; {\rm GeV} $ and $ E_e=20\; {\rm GeV} $ , respectively. We can constrain the effective coupling strength between the ALP and photons to be $ E_e=20\; {\rm GeV} $ at the $ E_e=20\; {\rm GeV} $ confidence level with an integrated luminosity of $ E_e=20\; {\rm GeV} $ for the mass range $ E_e=20\; {\rm GeV} $ . Such bounds may be significantly improved if we consider the nucleus beam at the EIC. We also demonstrate that the limits from the EIC can be stronger than the off Z-pole measurement at the LEP and light-by-light scattering with pp collisions at the LHC.Is Part Of CPC 2023 , Vol.C47 , 043113 Identifier ISSN: DOI 10.1088/1674-1137/acbbc0Publisher IOPCategory Resources PDF: http://repo.scoap3.org/api/files/a758666e-de68-4027-8cdf-b4eb534ef323/10.1088/1674-1137/acbbc0.pdf
-
SCOAP3
Subject Source SCOAP3 URL https://repo.scoap3.org/records/76145view Article Title Note on rare -boson Decays to Double Heavy QuarkoniaAuthors Gao, Dao-Neng; Gong, XiAbstract Within the standard model, we have investigated rare Z-boson decays into double heavy quarkonia, $ Z\to VV $ and $ Z\to VV $ , with V and P denoting vector and pseudoscalar quarkonia, respectively. It is assumed that the leading-order QCD diagrams would give the dominant contributions to these processes, and the corresponding branching fractions, for instance, $ Z\to VV $ , have been estimated to be approximately $ Z\to VV $ in literature. However, these decays could also happen through electromagnetic transitions $ Z\to VV $ and $ Z\to VV $ , with the virtual photon transforming into V. Interestingly, the smallness of the vector quarkonium mass can give rise to a large factor $ Z\to VV $ relative to the QCD contributions, which thus counteracts the suppression from the electromagnetic coupling. We systematically include these two types of contributions in our calculation to predict branching fractions for these decays. Particularly, owing to the virtual photon effects, it is found that $ Z\to VV $ will be significantly enhanced, up to $ Z\to VV $ .Is Part Of CPC 2023 , Vol.C47 , 043106 Identifier ISSN: DOI 10.1088/1674-1137/acb7d1Publisher IOPCategory Resources PDF: http://repo.scoap3.org/api/files/8dfab769-5c24-41fe-adff-56282aea12ae/10.1088/1674-1137/acb7d1.pdf
-
SCOAP3
Subject Source SCOAP3 URL https://repo.scoap3.org/records/76248view Article Title Atomic mass, Bjorken variable, and scale dependence of quark transport coefficient in Drell-Yan process for proton incident on nucleusAuthors Xu, Wei-Jie; Bai, Tian-Xing; Duan, Chun-GuiAbstract By means of the nuclear parton distributions determined without the fixed-target Drell-Yan experimental data and the analytic expression of quenching weight based on the BDMPS formalism, next-to-leading order analyses were performed on the Drell-Yan differential cross section ratios from the Fermilab E906 and E866 collaborations. It was found that the results calculated only with the nuclear effects of the parton distribution were not in agreement with the E866 and E906 experimental data. The incoming parton energy loss effect cannot be ignored in the nuclear Drell-Yan reactions. The predicted results indicate that, with the quark transport coefficient as a constant, the suppression due to the target nuclear geometry effect is approximately $ 16.85\ $ % for the quark transport coefficient. It was shown that we should consider the target nuclear geometry effect in studying the Drell-Yan reaction on nuclear targets. On the basis of the Bjorken variable and scale dependence of the quark transport coefficient, the atomic mass dependence was incorporated. The quark transport coefficient was determined as a function of the atomic mass, Bjorken variable $ 16.85\ $ , and scale $ 16.85\ $ by the global fit of the experimental data. The determined constant factor $ 16.85\ $ of the quark transport coefficient is $ 16.85\ $ GeV $ 16.85\ $ /fm. It was found that the atomic mass dependence has a significant impact on the constant factor $ 16.85\ $ in the quark transport coefficient in cold nuclear matter.Is Part Of CPC 2023 , Vol.C47 , 043110 Identifier ISSN: DOI 10.1088/1674-1137/acb8a4Publisher IOPCategory Resources PDF: http://repo.scoap3.org/api/files/edace5a9-b1ba-4bca-acf2-e727feda92f8/10.1088/1674-1137/acb8a4.pdf
-
SCOAP3
Subject Source SCOAP3 URL https://repo.scoap3.org/records/76246view Article Title Resonance contributions from In Charmless Three-body Hadronic Meson DecaysAuthors Zhang, Ya-Lan; Wang, Chao; Lin, Yi; Xiao, Zhen-JunAbstract Within the framework of perturbative QCD factorization, we investigate the nonfactorizable contributions to the factorization-forbidden quasi-two-body decays $ B_{(s)}\rightarrow h\chi_{c0}\rightarrow h\pi^+\pi^-(K^+K^-) $ with $ B_{(s)}\rightarrow h\chi_{c0}\rightarrow h\pi^+\pi^-(K^+K^-) $ . We compare our predicted branching ratios for the $ B_{(s)}\rightarrow h\chi_{c0}\rightarrow h\pi^+\pi^-(K^+K^-) $ decay with available experiment data as well as predictions by other theoretical studies. The branching ratios of these decays are consistent with data and other theoretical predictions. However, in the Cabibbo-suppressed decays $ B_{(s)}\rightarrow h\chi_{c0}\rightarrow h\pi^+\pi^-(K^+K^-) $ with $ B_{(s)}\rightarrow h\chi_{c0}\rightarrow h\pi^+\pi^-(K^+K^-) $ , the values of the branching ratios are of the order of $ B_{(s)}\rightarrow h\chi_{c0}\rightarrow h\pi^+\pi^-(K^+K^-) $ and $ B_{(s)}\rightarrow h\chi_{c0}\rightarrow h\pi^+\pi^-(K^+K^-) $ . The ratio $ B_{(s)}\rightarrow h\chi_{c0}\rightarrow h\pi^+\pi^-(K^+K^-) $ between the decays $ B_{(s)}\rightarrow h\chi_{c0}\rightarrow h\pi^+\pi^-(K^+K^-) $ $ B_{(s)}\rightarrow h\chi_{c0}\rightarrow h\pi^+\pi^-(K^+K^-) $ and $ B_{(s)}\rightarrow h\chi_{c0}\rightarrow h\pi^+\pi^-(K^+K^-) $ and the distribution of branching ratios for different decay modes in invariant mass are considered in this study.Is Part Of CPC 2023 , Vol.C47 , 043112 Identifier ISSN: DOI 10.1088/1674-1137/acbaeaPublisher IOPCategory Resources PDF: http://repo.scoap3.org/api/files/dc1ec4f3-33ba-4849-bcb3-6ee720787e59/10.1088/1674-1137/acbaea.pdf
-
SCOAP3
Subject Source SCOAP3 URL https://repo.scoap3.org/records/76019view Article Title -Symmetric NMSSMAuthors Xu, Shuai; Zheng, SiboAbstract It is well known that the observed Higgs mass is more naturally explained in the next-to-minimal supersymmetric standard model (NMSSM) than in the minimal supersymmetric standard model. Without any violation of this success, there are variants of the NMSSM that can lead to new phenomenologies. In this study, we propose a new variant of the NMSSM by imposing an unbroken R symmetry. We first identify the minimal structure of such a scenario from the perspective of both simplicity and viability, then compare the model predictions to current experimental limits, and finally highlight the main features that differ from those of well-known scenarios.Is Part Of CPC 2023 , Vol.C47 , 043105 Identifier ISSN: DOI 10.1088/1674-1137/aca95cPublisher IOPCategory Resources PDF: http://repo.scoap3.org/api/files/2b5e8cfa-0993-41c8-a9c4-ade9c463cc3e/10.1088/1674-1137/aca95c.pdf
-
SCOAP3
Subject Source SCOAP3 URL https://repo.scoap3.org/records/76249view Article Title Cosmological imprints of Dirac neutrinos in a keV-vacuum 2HDMAuthors Li, Shao-Ping; Li, Xin-Qiang; Yan, Xin-Shuai; Yang, Ya-DongAbstract The Dirac neutrino masses could be simply generated by a neutrinophilic scalar doublet with a vacuum being dramatically different from the electroweak one. While the case with an eV-scale vacuum has been widely explored previously, we exploit in this work the desert where the scalar vacuum is of $\mathcal{O}(\mathrm{keV})$ scale. In this regime, there would be rare hope to probe the keV-vacuum neutrinophilic scalar model via the lepton-flavor-violating processes, which makes it distinguishable from the widely considered eV-scale vacuum. Although such a keV-vacuum scenario is inert in the low-energy flavor physics, we show that the baryogenesis realized via the lightest Dirac neutrino can be a natural candidate in explaining the baryon asymmetry of the Universe. Furthermore, the Dirac neutrinos with a keV-vacuum scalar can generate a shift of the effective neutrino number within the range $\mathcal{O}(\mathrm{keV})$ , which can be probed by the future Simons Observatory experiments. In particular, the model with a minimal value $\mathcal{O}(\mathrm{keV})$ can already be falsified by the future CMB Stage-IV and Large Scale Structure surveys, providing consequently striking exploratory avenues in the cosmological regime for such a keV-vacuum scenario.Is Part Of CPC 2023 , Vol.C47 , 043109 Identifier ISSN: DOI 10.1088/1674-1137/acb6dePublisher IOPCategory Resources PDF: http://repo.scoap3.org/api/files/c8df3d90-7d5e-4d28-a170-3261699b0886/10.1088/1674-1137/acb6de.pdf